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Abstract — The onset of convective motion in a horizontal fluid layer under constant flux heating is
analyzed by the modified frozen-time analysis confining temperature disturbances within a thermal penetra-
tion distance. For this purpose a new mathematical method is introduced in detail. It is found that the present
stability analysis predicts the most reliable critical conditions based on the comparisons with the published
experiments and theoretical models. Atz <0.01, the stability conditions lead to Ra, = 14.17.2 and 3, =
0.248 Ra ' and the period required for the growth of disturbances to a detectable size is inversely propor-

tional to Ra /2.

INTRODUCTION

When a horizontal layer of intially motionless fluid is
heated from below, buoyancy-driven convection occurs
in the range exceeding a certain adverse temperature
gradient. The increase of heat transport induced by such
free convection is of practical importance in connection
with energy transmission systems, e.g., heat ex-
changers. Since Bénard (1] reported the systematic ex-
perimental results associated with thermal convection,
numerous contributions have been made to this field.
When heat is introduced slowly to the lower boundary
of the systemn, it is well known that the linearized theory
of Rayleigh [2] produces the stability conditions consis-
tent with the experimental results. However, the stabili-
ty analysis in the system with a nonlinear base tem-
perature profile is not so well established as the above
case of linear base temperature profiles.

In the present study the extended problem of
Rayleigh-Bénard instabilities, in which the base tem-
perature is time-dependent and vertically nonlinear, is
examined using the linear stability theory. The system
of particular interest is a fluid layer confined between
two horizontal rigid plates and heated uniformly from
below with constant heat flux. In the present system the
time required for the onset of free convection at a given
heating rate becomes a dominant question. This kind of
eigenvalue problems have been investigated thoroughly
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since Morton [3] employed the marginal stability
analysis freezing the instantaneous time at the onset
of convective motion. Lick [4] and Currie [5] extended
this frozen-time model, approximating the nonlinear
base temperature profile by two linear segments. As
another version of stability, Foster [6] developed the in-
itial value technique to describe the time development
of disturbances in the system. The major subsequent
work of this amplification theory has been conducted by
Foster [7] and Gresho and Sani [8]. They tried to make a
prediction of the time of onset of manifest convection,
considering some amplification factor. But this amplifi-
cation theory involves the inherent difficulty in deter-
mining the initial conditions and the magnitude of first
observable motion.

Recently Davis and Choi [9] suggested a modification
of frozen-time analysis that for a large Prandtl number
temperature disturbances are confined to some effective
thermal depth, i.e., a penetration distance. In plane
Couette flow of water they showed that this modified
stability analysis produces the best agreement with ex-
perimental results. Kim et al. [10] applied the modified
concept to the uniformly heated fluid layer. Using the
Galerkin method, they reported that the modified
analysis produces the most reasonable stability criteria
in comparison with the experiments of Nielsen and
Sabersky [11]. The purpose of this study is to critically
reexamine the instability of the above case, using a new
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Fig. 1. Sketch illustrating conduction layer.

semi-analytical approach and to improve drastically the
means of predicting the onset of free convection.

FORMULATION OF GOVERNING EQUATIONS

Consider an intially quiescent layer of Newtonian
fluid between two rigid plates, as illustrated in Figure 1.
The base temperature profiles caused by pure conduc-
tion will evolve, as indicated in the figure. For a given
heat flux g, buoyancy-driven convection will set in at a
certain critical time. The problem is to find this critical
time when the fluid layer becomes unstable with respect
to a given heat flux.

In the present system the conduction equation
becomes, in a dimensionless form,

2b_2 0 )
Jdr 9z
with the initial and boundary conditions as
8=0 at =20
=0 at z=1 @
26 _ _ -
52 1 at z=0
The above dimensionless variables are defined by
(ey2) =T XY.2, (@) = Luvwp K TT
qw d
and r=—%,where o denotes the termal diffusivity, k the

d
thermal conductivity and T, the initial temperature. This

conduction equation is easily solved, using the method
of separation of variables (Graeta procedure) as follows:

x 2 2
— e, 2 A
fo=1-z rf‘::,,\:‘e 1'cosz\.,z 3)

! )
where A= (n— o Jn. However, at small times of 7=

0. 01 the following Leveque solution is more convenient:
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Go=1/ 4—’:exp(-f‘;)—\/7{1—er’f(\/ i)} @

The dimensionless perturbation equations for distur-
bances under the Boussinesq approximation are derived
as usual (for example, see Davis and Choi 1977):

1 9 /@ oty e .
Prar (az, a') o*+R, a
6*=0 5)
_a _ c . * ta_09= 6
[at (az. a')) 6*+w ™ 0 (©€)

where w* and 6 * represent the x-and y-independent
amplitudes of disturbances. These functions are derived
from the assumptions that any disturbance in the in-
finite horizontal xy-plane may be expressed in terms of
a periodic horizontal wave number a. The important
parameters to describe the system, the Prantl number Pr
and the Rayleigh number based on heat flux Ra, are
defined by Pr = %:_ and

dt
Re—BA v d
aky
were v denotes the kinematic viscosity, g the gravity ac-

celeration and B the thermal expansivity. Additionally,
the Nusselt number characterizing thermal enhance-
ment is defined by Nu = 1/6 , in accordance with that
of Nielsen and Sabersky [11], where @ , is the wall tem-
perature at the heated surface. Using the above equa-
tions, the critical conditions (z. vs. Ra_ and Ra_vs. a )
marking the onset of convective motion must be found
subject to the boundary conditions:

ow* 26*
« 90 _ = = 7
22 92 0 at z=20 (7
*
w*=—aw =§*=0 at z=1 (8)
oz

For the same system Nielsen and Sabersky [11] con-
ducted the experiments with silicone oils of Pr = 45~
4,770. Their results of Nu vs. = with respect to Ra are
summarized in Figure 2. The exact solution (3) of pure
conduction represented by the solid curve is found to be
consistent with the experimental results. With the in-
crease of Ra the deviation of Nu from the solid curve
starts at a smaller time. Nielsen and Sabersky con-
sidered the critical time as the time at which motion was
first observed on the shadowgraph. In the figure their
data points are represented by the dashed curve. It is
easily understood that disturbances caused by the onset
of motion require some growth period until they are
detectable. Since the detection of motion is dependent
upon the sensitivity of a measuring apparatus, such
consideration of a critical time as the time of manifest
convection that has been claimed by Foster et al. lacks
uniqueness. Therefore, in the present study we regard
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Fig. 2. Heat transfer characteristics based on

experiments of Nielsen and Sabersky(11),

the critical time as the time at which Nu deviates from
the pure conduction state.
Even though the conduction solution is easily ob-
38
z
the mathematical difficulty in performing the stability
analysis. Thus, a modification of conduction solution is
made:

Go= 00. w (1";_) 6/&)' Yior z=6 (9)

tained, the nonlinear term in the equation (6) brings

=10 for z=2¢ 10
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Fig. 3. Comparison of base temperatore profiles
between the exact Graetz solution and

its modification.

where § is taken as a vertical distance from the bottom
surface at which g, = 0.01 4, .. This distance is a so-
called thermal penetration distance. The values of & and
§ ., are obtained from the equation (3} or (4). The base
temperature distributions predicted by the above modifi-
cation are compared with the exact ones in Figure 3.
The agreement between two cases is found to be good. It
is noted that the present approximation is a more ac-
curate one than the two linear segment approximation
of Currie [5]. As will be illustrated in the next section,
the equations (9) and (10} make it possible to generate
the critical conditions analytically with a good accuracy.

STABILITY ANALYSIS

As the perturbation equations are still much com-
plicated, two additional assumptions of (a) the onset of
stationary motion and (b) Pr —co are. made. The first
assmption makes the governing equations time-indepen-
dent and the second one makes it possible to apply the
modified frozen-time analysis to the present system
without the loss of physical implication of Pr.

Kim et al. [10] conducted the stability analysis for the
present system, using the following trial functions based
on the work of Gresho and Sani [8]:

w*=F A, sin 72 sinjrz an
0‘=§ B, cos(j—'21~)7rz 12

Their results from the Galerkin scheme show that the
conventional frozen-time analysis is valid only for the
case of a nearly linear base temperature profile, while
the Choi et al. 's modified one agrees well with the ex-
periments of Nielsen and Sabersky {11] in the entire
range. Since the Galerkin method is an approximate ap-
proach, the degree of correctness becomes doubtful ow-
ing to its poor convergence at small times. Therefore,
the more systematic stability analysis involving the
modified concept will be conducted analytically, using
the equations (6) and (7).

With the modified frozen-time analysis confining
temperature disturbances within a thermal penetration
distance the equations (5) and (6) are transformed to

((D'-6%a")+Ra a8 (1-¢) 8/0"‘"_1](0’:: 0

for 0S¢<1 (13)
(D'-862) ' w¥=0 or H2=0
for 1¢<1/6 (14
d

where ¢ =z/§and D = —. The subscript A denotes the

a¢
region inside of a penetration distance and B its outside
region. Introducing the interface conditions of Currie [5]

at ¢ = 1 and rewriting the boundary conditions (7} and
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(8), the complete set of boundary conditions become
D w¥=Dhws (n=0, 1,2 3,4) at {=1 (15
*=Dwi=D(D’-5"a*)"wl=0 at £=0 (16)
wf=Dwf=10 at £=1/8 (I7)

However, as the equation (13) is still complicated,
the base temperature gradient is expanded in a Taylor
series:

(1-¢)8/ v "l £ (—pn

ﬂT (k Ho.w_l)} {n (]8)

k=1
Now, we can obtain the general solution, using a rapidly
converging power series similar to those developed by
Sparrow et al. [12] as follows:

wi=Z Ci 1 () (19)
) =2 b e (20)

where C(i = 0 to 9) are arbitrary constants. The series
coefficients are defined by b} = 0 and b{) =84 (n =
0 to 5), where & ; indicates the Kronecker delta. For n26
the following recursion formula is generated from the
equation (10):

by =—-(37" (1=2) 1 biY, ~37" (n—4) ! bi,

+(y*~Rad*)y " (n—6) b’y —Rad‘y" (n—6)

E ome T it e

where y = §a. From the boundary condition (16) at ¢ =
0 we obtain Cy = C, = 0 and C, 2% C..

The general solution of equation (14) is easily obtain-
ed as follows:

wit=(Cy+C:Z)e ™+ (Ce+CoE)e™ 22

From the above solutions and remaining boundary
conditions seven algebraic equations are obtained in
terms of seven constants C_ (n = 2,3,4,6,7,8,9). The
resulting secular equation characterizing the stability
conditions is

[13%) DF ) G DG) D'GA) DG

© | -

D'G(1) D'G(1))™=0 (23)

where F and G are column matrices of seven elements
as the function of ¢ and the superscript T indicates the
transpose of a matrix. F and G are given as follow:

F=000e™ e ™ ¥ re™)" 24
G=(-f7(g) — i <g>+% £ (2

_f(‘)(é—) e~7f {e—Yf e‘Y{

re™)T 25)

LM
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experiments of Nielsen and Sabersky (11].

Galerkin method,the work of Kim et al.(10);

o, detection of motion on the shadowgraph.

The eigenvalues contained in the equation (23) are Ra, a
and zc. For the given the neutral stability curve of Ra
vs. a must be computed. For that particular time the
minimum value of Ra is the critical Rayleigh number
Ra, and its corresponding wave number is the critical
wave number a_.

GENERAL RESULTS AND DISCUSSION

The variations of the Rayleigh number with respect
to the critical time marking the onset of free convection
are summarized in Figure 4. In the figure a dot indicates
the deviation point of Nu from that of pure conduction
for a given Ra (see Figure 2) and a circle the detection
time of motion observed on the shadowgraph. All these
experimental results were obtained by Nielsen and
Sabersky [11], using silicone oils of Pr=45. The curve
“Galerkin 1" represents the theoretical results based on
the conventional frozen-time analysis, using the
Galerkin method, and “Galerkin 2" its modification.
This Galerkin procedure using equations (11) and (12} is
described in the work of Kim et al. [10], but its con-
vergence is noted to become poorer as . decreases. The
present theoretical results using a rapidly converging
power series (19) to (21) is found to constitute a
reasonable lower bound of experimental data. As men-
tioned before, the detection of motion requires the
growth period of disturbances to a detectable size. It
should be observed that at large critical Rayleigh
numbers the present results on logarithmic scales is
almost parallel to the trajectory of the experimental
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Rayleigh number.

points.

The critical wave number as a function of the
Rayleigh number is shown in Figure 5. Differences
among these theoretical results may be explained from
both physical and mathematical viewpoints. Unfor-
tunately no experimental data exist in this connection,
but it is believed that the wave number decreases with
the decrease of the Prandtl number. Since the present
results are based on the limiting case of Pr+co, they may
provide the upper bound of the critical wave number.
Comparing the results of Currie [5] with the present
study, his Ra, is a little lower than those of the presnt
study, but in the range of Ra 2106 his a, agrees well
with those of “Galerkin 2”. In the case of rapid heating
the wave number of growing disturbances will be con-
tinuously changing. This fact makes it very difficult to
determine experimentally the critical wave number
marking the onset of motion in the transient system.

With the increase of = the critical conditions lead to
Ra, .= 1295.8 and a_ = 2.55, which are the same
values as those in the case of a linear base temperature
profile. On the other hand, with the decrease of % the
present analysis shows the relations of Ra, = 14.1%"
and a_, = 0.248 Ra4. These expressions may be used
for the prediction of critical conditions in the range of
7 <0.01. In this range, the ratio of & to 8 , , has the value
of 2.84 as shown in Figure 6, and the relation of & =
3.21 ¢z7* may be used, considering the solutions (3) and
“).

Applying the condition of & - 0 or zc ~» 0 to the
equations (13) and (14), the present system becomes ar-
tificially independent of & and the new eigenvalues of
Rag* and a may be obtained. These limiting values are
found to be Ra.8*= 1,490 and a6 = 1.54. They are valid

only when the Prandtl number is very large. The
modified analysis may not be applied to the system with
samll Prandtl numbers. Davis and Choi [9] show-
ed that the modified analysis predicts the oneset
of free convection very well for water data of Pr = 6~ 8.
Thus, it may be stated that the present analysis provides
the most reasonable stability criteria of fluids in the
range of Pr=6. The study of the effect of Pr on the
critical conditions is in progress in this laboratory.

At this stage it may be of interest to convert the pre-
sent results in terms of the conventional Rayleigh
number R=g# ATd’/{ev), based on the overall
temperature difference. The relationship between R and
Ra can be written as R = 6 __ Ra. In the range of
% 20.01 the correlations of R #*= 526 and R, = 2.19
Ra}* are easily obtained. For a given Ra_ in the range of
104 <Ra_ <107 the latter correlation produces the lower
value of R_ than that of Nielsen and Sabersky {11], but
produces the higher one than that of Soberman [13]. In
their correlation Nielsen and Sabersky considered the
critical conditions as the time at which motion is first
detected on their shadowgraph. Thus, it seems reason-
able that their results are higher than the present ones
which are concerned with the instant of beginning dis-
turbances. It has been generally accepted that the ex-
perimental results of Soberman are incorrect owing to
an underestimate of the overall temperature difference,
but they can be used as a lower bound of R..

The slope of R, vs. Ra, is almost the same as that of
Nielsen and Sabersky. Considering the sensitivity of
their shadowgraph, it may be presumed that for the
same magnitude of disturbances a period of growth of
disturbances decreases with the increase of the Rayleigh
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Fig. 6. The ratio of penetration distance to wall

temperature as a function of time.
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number. With Ra_ <104 the growth period based on the
present analysis and their detection time is approx-
imated: Az.= 12.1 Ra™. In other words disturbances
grow rapidly in proportion to Ral2. These trends are
qualitatively in agreement with those of Gresho and
Sani [8}. Once motion is detected, the linear theory will
be no longer applicable.

For the simplification of mathematical procedure in
the present system Kim and Choi [14] conducted the
asymptotic analysis, choosing the values of #/ &, was 1, 2
and 3. In Figure 6 it is shown that at 7.>2 its value ccn-
verges to 1and at z. <0.05 it approaches a constant of
2.84. Their asymptotic results are compared with the
present one in Figure 7. When ¢ <0.1 and = >2, the
agreement between two analyses is excellent, including
the critical wave number. Thus, this kind of analysis will
provide the preliminary criteria of stability with ease.
Also, it is known that the shape of base temperature pro-
files is important in determining the critical conditions.

Inthe system of Pr-oco the momentum boundary-layer
thickness is very large in comparison with the thermal
one. In the present analysis this premise makes it possi-
ble to confine temperature disturbances within a ther-
mal penetration distance and also causes velocity distur-
bances to move through the whole depth of a fluid layer.
The slow heating removes the dependence of stability
conditions on Pr, because both thermal and momentum
boundary layers are fully developed to the whole fluid
depth upon the onset of motion. But in the case of rapid
heating there remains a question about the effect of Pr,
which will control the range of propagation of distur-
bances of temperature and velocity. In this viewpoint
the conventional frozen-time analysis assuming that
disturbances of both temperature and velocity will oc-
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cupy the whole fluid depth may correspond to the
limiting case of Pr — 0. But considering the driving
force of temperature difference causing the onset of mo-
tion, it is also a probable guess that Ra, is a weak func-
tion of Pr, but a_ is dependent upon Pr to a certain
degree.

Considering all of the present results, the stability
criteria are strongly dependent upon both the shape of a
base temperature profile and the range of propagation of
disturbances. It may be loosely stated that the modified
frozen-time analysis confining the initial propagation of
temperature disturbances to a penetration distance is ap-
plicable to the predication of thermally induced in-
stabilities in the system of moderately large Prandtl
numbers.

CONCLUSIONS

The onset of thermal convection in a horizonal fluid
layer heated from below with constant heat flux has
been analyzed, using the modified frozen-time analysis.
For this purpose a new mathematical approach by
means of a rapidly converging power series has been
developed.

The present analysis predicts the most reasonable
stability conditions in the system of large Prandtl
numbers in comparison with the existing experimental
data. When 7c<0.01, the critical conditions are found to
have the relations of Ra. = 14.1 ;7" and a, = 0.248
Ra 4. Also, in this range it is shown that growth period
of disturbances is inversely proportional to Ra!”2. Con-
sidering all the present results, it is concluded that the
extent of penetration of temperature disturbances in a
fluid layer plays a dominant role in determining the
critical conditions causing the onset of thermal convec-
tion.

The results presented here complement the existing
results for a fluid layer undergoing a step change in
temperature by Kihm, Choi and Yoo [15].

Acknowledgements

This work was reported during the visit of C K. Choi
to The University of lowa under the auspices of the
Korea Ministry of Education. This support was greatly
appreciated.

NOMENCLATURE
a: dimensionless wave number
A;: coefficients in equation (11)
b,: coefficients in equation (20}
B;: coefficients in equation (12)
C;: coefficients in equation (19)



d:

D
F
g acceleration of gravity [9.807 m /s?]
G
k
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fluid depth [m]
. differential operator, g—g
. column matrix defined by equation (24)

: column matrix defined by equation (25)

: thermal conductivity [W/m °K]

: Nusselt number, g ;*

: Prandtl number, v /a

. lower surface heat flux [W/m?]

: Rayleigh number based ¢n A T, g8A Td'/ve
. Rayleigh number based based on q,, g8qud*/aky
time {s]

: temperature [°K]

- initial or upper wall temperature [°K]

: dimensionless vertical velocity, Wd/a

: vertical velocity {m/s]

. dimensionless vertical distance, Z/d

: vertical distance [m]

Greek symbols

: thermal diffusivity [m?/S]

: thermal expansivity [°K"]

. coefficient in equation (21), a&

: dimensionless thermal penetration distance

: surface-to-surface temperature difference, T ,-T;

: reduced vertical distance, z/&

: dimensionless temperature, k(T-T )/q,d

: amplitude function of temperature in equation (5)
: kinematic viscosity [m?/s]

7 : dimensionless time, ta/d?

: amplitude function of vertical velocity in equation

©)

Subscripts

A: region inside of penetration distance

FTO0Nw

11

12.

13.
14.

15.

. Gresho, P.M. and Sani,

: region outside of penetration distance
. critical state

. base state

: lower surface wall

REFERENCES

Bénard, H.: Ann. Chem. Phys., 23, 62 (1901).
Lord Rayleigh: Phil. Mag., 32, 525 (1916).

Morton, B.R.: Quart J. Mech. App. Math., 10, 433
(1957).

Lick, W.: J. Fluid Mech., 21, 565 (1965).

Currie, 1.G.: J. Fluid Mech., 29, 337 (1967).
Foster, T.D.: Phys. Fluids, 8, 1249 (1965).

Foster, T.D.: Phys. Fluids, 11, 1257 (1968).

R.L: /nt. J. Heat Mass
Transfer, 14, 207 (1971).

Davis, EJ. and Choi, C.K.: J. Fluid Mech., 81, 207
(1977).

. Kim, JJ., Choi, C.K., Choi, U. and Lee, K.J.: Segul

National University Engineering Report, 11, 53
(1979).

Nielsen, R.C. and Sabersky, R.H.: Int. J. Heat Mass
Transfer, 16, 2407 (1973).

Sparrow, E.M., Goldstein, R.J. and Jonsson, V.K.: J.

Fluid Mech., 18, 513 (1963).

Soberman, RK.: Phys. Fluids, 2, 131 (1959).

Kim, JJ. and Choi, CK.: J Korean Inst Chem.

Eng., 18, 359 (1980).

Kihm, K.D., Choi, CK. and Yoo, J.Y.: Int. J. Heat
Mass Transfer, 25, 1829 (1982).

Korean J. Ch.E.(Vol. 2, No. 1)



