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Abstract --  The onset of convective motion in a horizontal fluid layer under constant flux heating is 
analyzed by the modified frozen-time analysis confining temperature disturbances within a thermal penetra- 
tion distance. For this purpose a new mathematical method is introduced in detail. It is found that the present 
stability analysis predicts the most reliable critical conditions based on the comparisons with the published 
experiments and theoretical models. At r c <0.01, the stability conditions lead to Rac = 14.1 re-2 and ar = 
0.248 Rac lj4 and the period required for the growth of disturbances to a detectable size is inversely propor- 
tional to Rae 1/2. 

INTRODUCTION 

When a horizontal layer of intially motionless fluid is 
heated from below, buoyancy-driven convection occurs 
in the range exceeding a certain adverse temperature 
gradient. The increase of heat transport induced by such 
free convection is of practical importance in connection 
with e.nergy transmission systems, e.g., heat ex- 
changers. Since Bdnard [1] reported the systematic ex- 
perimental results associated with thermal convection, 
numerous contributions have been made to this field. 
When heat is introduced slowly to the lower boundary 
of the system, it is well known that the linearized theory 
of Rayleigh [2] produces the stability conditions consis- 
tent with the experimental results. However, the stabili- 
ty analysis in the system with a nonlinear base tem- 
perature profile is not so well established as the above 
case of linear base temperature profiles. 

In the present study the extended problem of 
Rayleigh-Bdnard instabilities, in which the base tem- 
perature is time-dependent and vertically nonlinear, is 
examined using the linear stability theory. The system 
of particular interest is a fluid layer confined between 
two horizontal rigid plates and heated uniformly from 
below with constant heat flux. In the present system the 
time required for the onset of free convection at a given 
heating rate becomes a dominant question. This kind of 
eigenvalue problems have been investigated thoroughly 
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since Morton [3] employed the marginal stability 
analysis freezing the instantaneous time at the onset 
of convective motion. Lick [4] and Currie [5] extended 
this frozen-time model, approximating the nonlinear 
base temperature profile by two linear segments. As 
another version of stability, Foster [6] developed the in- 
itial value technique to describe the time development 
of disturbances in the system. The major subsequent 
work of this amplification theory has been conducted by 
Foster [7] and Gresho and Sani [8]. They tried to make a 
prediction of the time of onset of manifest convection, 
considering some amplification factor. But this amplifi- 
cation theory involves the inherent difficulty in deter- 
mining the initial conditions and the magnitude of first 
observable motion. 

Recently Davis and Choi [9] suggested a modification 
of frozen-time analysis that for a large Prandtl number 
temperature disturbances are confined to some effective 
thermal depth, i.e., a penetration distance. In plane 
Couette flow of water they showed that this modified 
stability analysis produces the best agreement with ex- 
perimental results. Kim et al. [10] applied the modified 
concept to the uniformly heated fluid layer. Using the 
Galerkin method, they reported that the modified 
analysis produces the most reasonable stability criteria 
in comparison with the experiments of Nielsen and 
Sabersky [11]. The purpose of this study is to critically 
reexamine the instability of the above case, using a new 
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Fig. 1. Sketch i l lustrating conduction layer. 

semi-analytical approach and to improve drastically the 
means of predicting the onset of free convection. 

FORMULATION OF GOVERNING EQUATIONS 

Consider an intially quiescent layer of Newtonian 
fluid between two rigid plates, as illustrated in Figure 1. 
The base temperature profiles caused by pure conduc- 
tion will evolve, as indicated in the figure. For a given 
heat flux %, buoyancy-driven convection will set in at a 
certain critical time. The problem is to find this critical 
time when the fluid layer becomes unstable with respect 
to a given heat flux. 

In the present system the conduction equation 
becomes, in a dimensionless form, 

aeo a'8o (1) 
ar az' 

with the initial and boundary conditions as 

0o=0 at r = 0  

So= 0 at z= i (2) 

O0o 
. . . .  1 at z=0 
az 

The above dimensionless variables are defined by 

1 a k ( T -  T,) (x,y,z) =-~-(X,Y,Z), (u,v,w) = (U,V,W),o 
qw d 

t a  a 
and r =~-,where denotes the termal diffusivity, k the 

thermal conductivity and T~ the initial temperature. This 
conduction equation is easily solved, using the method 
of separation of variables (Graeta procedure) as follows: 

Oo=l-z-.,~.=, L~ cosA,z (3) 

1 
where X,,= (n-o)zr. However, at small times of 3 < 

0. 01 the following Leveque solution is more convenient: 

4 r z (~- -~)  
8o = v/~exp (-~r) - ~-z{l- err (4) 

The dimensionless perturbation equations for distur- 
bances under the Boussinesq approximation are derived 
as usual (for example, see Davis and Choi 1977): 

~-~-;-( -~')] -E) ~*+a~ ~' 

0"= 0 (S) 

[4ar-(~-D~ ' - a ' ) ~ o * + ~ 1 7 6  (6) 

where w* and 0 * represent the x-and y-independent 
amplitudes of disturbances. These functions are derived 
from the assumptions that any disturbance in the in- 
finite horizontal xy-plane may be expressed in terms of 
a periodic horizontal wave number a. The important 
parameters to describe the system, the Prantl number Pr 
and the Rayleigh number based on heat flux Ra, are 
defined by Pr = ~ and 

n 

Ra g,8 q,, d' 
n k b '  ' 

were ~ denotes the kinematic viscosity, g the gravity ac- 
celeration and ~8 the thermal expansivity. Additionally, 
the Nusselt number characterizing thermal enhance- 
ment is defined by Nu = 1/0 *', in accordance with that 
of Nielsen and Sabersky [ll], where 0,, is the wall tem- 
perature at the heated surface. Using the above equa- 
tions, the critical conditions (re vs. Ra c and Ra c vs. ac) 
marking the onset of convective motion must be found 
subject to the boundary conditions: 

aa~* aO* 
w*= = = 0 at z= 0 (7) 

az  az 

e o * = a w * = 0 * = 0  at z = l  (8) 
az 

For the same system Nielsen and Sabersky [1 l] con- 
ducted the experiments with silicone oils of Pr = 45 
4,770. Their results of Nu vs. r with respect to Ra are 
summarized in Figure 2. The exact solution (3) of pure 
conduction represented by the solid curve is found to be 
consistent with the experimental results. With the in- 
crease of Ra the deviation of Nu from the solid curve 
starts at a smaller time. Nielsen and Sabersky con- 
sidered the critical time as the time at which motion was 
first observed on the shadowgraph. In the figure their 
data points are represented by the dashed curve. It is 
easily understood that disturbances caused by the onset 
of motion require some growth period until they are 
detectable. Since the detection of motion is dependent 
upon the sensitivity of a measuring apparatus, such 
consideration of a critical time as the time ol manifest 
convection that has been claimed by Foster et al. lacks 
uniqueness. Therefore, in the present study we regard 
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the critical time as the time at which Nu deviates from 
the pure conduction state. 

Even though the conduction solution is easily ob- 

tained, the nonlinear term 000 in the equation (6) brings 
Oz_ 

the mathematical difficulty in performing the stability 
analysis. Thus, a modification of conduction solution is 
made: 

0o "= 0o . .  (1 - ~-) ~18o. w for z < a" (9) 

00= 0 for z=>~ ' (t0) 

z - GRAETZI 

-- MODIFIED 

r  

o 

E 
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Fig.  3. 
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Comparison of  base  t emperature  prof i l es  

b e t w e e n  the exac t  Graetz  so lut ion  and 

i t s  modif icat ion.  

where 6 is taken as a vertical distance from the bottom 
surface at which 0o = 0.01 0o,.w. This distance is a so- 
called thermal penetration distance. The values of 8 and 
0 o.w are obtained from the equation (3) or (4). The base 
temperature distributions predicted by the above modifi- 
cation are compared with the exact ones in Figure 3. 
The agreement between two cases is found to be good. It 
is noted that the present approximation is a more ac- 
curate one than the two linear segment approximation 
of Currie [5]. As will be illustrated in the next section, 
the equations (9) and (10) make it possible to generate 
the critical conditions analytically with a good accuracy. 

STABILITY ANALYSIS  

As the perturbation equations are still much com- 
plicated, two additional assumptions of (a) the onset of 
stationary motion and (b) Pr--.oo are made. The first 
assmption makes the governing equations time-indepen- 
dent and the second one makes it possible to apply the 
modified frozen-time analysis to the present system 
without the loss of physical implication of Pr. 

Kim et al. [10] conducted the stability analysis for the 
present system, using the following trial functions based 
on the work of Gresho and Sani [8]: 

w*=~Aj sin n'z sin prz (11) 

1 
0 " = ~ ,  B, cos( j - --~)~rz (12) 

Their results from the Galerkin scheme show that the 
conventional frozen-time analysis is valid only for the 
case of a nearly linear base temperature profile, while 
the Choi et al. 's modified one agrees well with the ex- 
periments of Nielsen and Sabersky [11] in the entire 
range. Since the Galerkin method is an approximate ap- 
proach, the degree of correctness becomes doubtful ow- 
ing to its poor convergence at small times. Therefore, 
the more systematic stability analysis involving the 
modified concept will be conducted analytically, using 
the equations (6) and (7). 

With the modified frozen-time analysis confining 
temperature disturbances within a thermal penetration 
distance the equations (5) and (6) are transformed to 

[ ~ ( D ' - 6 ' a ' ) ' - - R a  a ' b " ( 1 -  ~') b ' /0~  0 

for 0 < ~ ' <  1 (13) 

( D ' - b " a ' ) ' o J * = 0  or 0 * = 0  

for 1 <~'-----1/6 (14) 

where ~' = z / ~ a n d  D = d .  The subscript A denotes the 

region inside of a penetration distance and B its outside 
region. Introducing the interface conditions of Currie [5] 
at ~" = 1 and rewriting the boundary conditions (7) and 
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(8), the complete set of boundary conditions become 

D n ._ �9 = r (n=0, 1, 2, 3, 4) at ~" 1 (15) 

w*=Dw*B=D(D'-~'af)'w*=O at ~ ' = 0  (16) 
,1, , I , - -  w B = D w , , - - 0  at ~ '=l /b"  (17) 

However, as the equation (13) is still complicated, 
the base temperature gradient is expanded in a Taylor 
series: 

(1 -  ~.>b'/0o.. - 1=1+. ,~ ( _ l ) n  
n = l  

I~'F ( ~" - 1)t C" (18) k=, k 8o,,, 
Now, we can obtain the general solution, using a rapidly 
converging power series similar to those developed by 
Sparrow et al. [12] as follows: 

a,*=,,~ C, f"~ (~') (19) 
I = 0  

f'" <C)=.~ b2' C" (20) ,a~lm 

where C~(i = 0 to 9) are arbitrary constants. The series 
coefficients are defined by b (it = 0 and b(,~) = 6.i (n = 
0 to 5), where 8.i indicates the Kronecker delta. For n>-6 
the following recursion formula is generated from the 
equation (10): 

b~'~=~iCI37 ' ( n -Z)  w b(n'~ - 3 7  ( n - 4 )  ! �9 ' bn_,"> 
I t . ,  

�9 ' ' b._. - R a # ' 7 '  ( n - 6 )  + ( 7  -Rab" )9' ( n - 6 )  ! '~ 
r l - I  n - 6  -J . ~ "  

? X ( - I )  n-'-' I-IT ( ~ - l ) } b J  t~] (21) 
J=  1 k= t  

where 7 = 6a. From the boundary condition (16) at ~- = 
9" 0 weob ta inC 0 = C 1 = 0 a n d  C s =  ~ C:~. 

The general solution of equation (14) is easily obtain- 
ed as follows: 

coB*= ( C , + C , ~ ' ) e - r r  ( C , + C , ~ ' ) e  ~r̀  (22) 

From the above solutions and remaining boundary 
conditions seven algebraic equations are obtained in 
terms of seven constants C. (n = 2,3,4,6,7,8,9). The 
resulting secular equation characterizing the stability 
conditions is 

[1~(1) D_F@-) G_(1) DG_(1) D'G__(I) D'G(1) 

IS?G_(1> D�9 '= 0 (23) 

where_F and G are column matrices of seven elements 
as the function of ~" and the superscript T indicates the 
transpose of a matrix. F and G'are given as follow: 

._F'= ~0 0 0 e -~'r ~'e -~'r e ~ ~'e~W) r (24) 

G = ~ - f , ~ ( ~  -) / f ' " (~ ' )+~0  f ' " (~ ' ) !  

- f ( "  (~') e-r"  C e-:'r e'rr ~'e~'r (25) 
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Fig. 4. Comparison of theoretical models wi th  
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Galerkin method, the work of Kim et al.~10); 

o, detection of motion on the shadowgraph. 

The eigenvalues contained in the equation (23) are Ra, a 
and re. For the given rc the neutral stability curve of Ra 
vs. a must be computed. For that particular time the 
minimum value of Ra is the critical Rayleigh number 
Ra< and its corresponding wave number is the critical 
wave number a c. 

GENERAL RF_.SULTS AND DISCUSSION 

The variations of the Rayleigh number with respect 
to the critical time marking the onset of free convection 
are summarized in Figure 4. In the figure a dot indicates 
the deviation point of Nu from that of pure conduction 
for a given Ra (see Figure 2) and a circle the detection 
time of motion observed on the shadowgraph. All these 
experimental results were obtained by Nielsen and 
Sabersky [11], using silicone oils of Pr->45. The curve 
"Galerkin 1" represents the theoretical results based on 
the conventional frozen-time analysis, using the 
Galerkin method, and "Galerkin 2" its modification. 
This Galerkin procedure using equations (11) and (12) is 
described in the work of Kim et al. [10], but its con- 
vergence is noted to become poorer as rc decreases. The 
present theoretical results using a rapidly converging 
power series (1!)) to (21) is found to constitute a 
reasonable lower bound of experimental data. As men- 
tioned before, tile detection of motion requires the 
growth period of disturbances to a detectable size. It 
should be observed that at large critical Rayleigh 
numbers the present results on logarithmic scales is 
almost parallel to the trajectory of the experimental 
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points. 
The critical wave number as a function of the 

Rayleigh number is shown in Figure 5. Differences 
among these theoretical results may be explained from 
both physical and mathematical viewpoints. Unfor- 
tunately no experimental data exist in this connection, 
but it is believed that the wave number decreases with 
the decrease of the Prandtl number. Since the present 
result.'; are based on the limiting case of Pr..oo, they may 
provide the upper bound of the critical wave number. 
Comparing the results of Currie [5] with the present 
study, his Ra~ is a little lower than those of the presnt 
study, but in the range of Ra~>~106 his a c agrees well 
with those of "Galerkin 2". In the case of rapid heating 
the wave number of growing disturbances will be con- 
tinuously changing. This fact makes it very difficult to 
determine experimentally the critical wave number 
marking the onset of motion in the transient system. 

With the increase of re the critical conditions lead to 
Rac. | 1295.8 and a~| 2.55, which are the same 
values as those in the case of a linear base temperature 
profile,. On the other hand, with the decrease of re the 
present analysis shows the relations of Ra r  14.1 r,~' 
and a= = 0.248 Rar TM. These expressions may be used 
for the prediction of critical conditions in the range of 
rc_<O.01. In this range, the ratio of ~' to 0 o.w has the value 
of 2.84 as shown in Figure 6, and the relation of b" = 
3.21 ' / '  re. , may be used, considering the solutions (3) and 
(4). 

Applying the condition of ~" ~ 0 or re ~ 0 to the 
equations (13) and (14), the present system becomes ar- 
tificially independent of 8 and the new eigenvalues of 

Ra6"' and a may be obtained. These limiting values are 
found to be Ra t# '=  1,490 and a,:8 = 1.54.They are valid 

only when the Prandtl rmmber is very large. The 
modified analysis may not be applied to the system with 
saml[ Prandtl numbers. Davis and Choi [9] show- 
ed that the modified analysis predicts the oneset 
of free convection very well for water data of Pr = 6--  8. 
Thus, it may be stated that the present analysis provides 
the most reasonable stability criteria of fluids in the 
range of Pr>6. The study of the effect of Pr on the 
critical conditions is in progress in this laboratory. 

At this stage it may be of interest to convert the pre- 
sent results in terms of the conventional Rayleigh 
number R=g, R ATd' / (av) , .  based on the overall 
temperature difference. The relationship between R and 
Ra can be written as R = 0o. w Ra. In the range of 
rc~0.01 the correlations of Rr = 526 and Re = 2.19 
Ra~ ~4 are easily obtained. For a given Ra c in the range of 
104 <Ra c <107 the latter correlation produces the lower 
value of Re than that of Nielsen and Sabersky I11], but 
produces the higher one than that of Soberman [13]. In 
their correlation Nielsen and Sabersky considered the 
critical conditions as the time at which motion is first 
detected on their shadowgraph. Thus, it seems reason- 
able that their results are higher than the present ones 
which are concerned with the instant of beginning dis- 
turbances. It has been generally accepted that the ex- 
perimental results of Soberman are incorrect owing to 
an underestimate of the overall temperature difference, 
but they can be used as a lower bound of R c. 

The slope of Re vs. Rar is almost the same as that of 
Nielsen and Sabersky. Considering the sensitivity of 
their shadowgraph, it may be presumed that for the 
same magnitude of disturbances a period of growth of 
disturbances decreases with the increase of the Rayleigh 
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number. With Ra~<104 the growth period based on the 
present analysis and their detection time is approx- 
imated: Arc= 12.1 Ra~ ~n. In other words disturbances 
grow rapidly in proportion to Ra~ n. These trends are 
qualitatively in agreement with those of Gresho and 
Sani [8]. Once motion is detected, the linear theory will 
be no longer applicable. 

For the simplification of mathematical prccedure in 
the present system Kim and Choi [14] conducted the 
asymptotic analysis, choosing the values of 6/00. ,, as 1,2 
and 3 In Figure 6 it is shown that at rr value co, n- 
verges to 1 and at rc <0.05 it approaches a constant of 
2.84. Their asymptotic results are compared with the 
present one in Figure 7. When rr <0.1 and re 72, the 
agreement between two analyses is excellent, including 
the critical wave number. Thus, this kind of analysis will 
provide the preliminary criteria of stability with ease. 
Also, it is known that the shape of base temperature pro- 
files is important in determining the critical conditions. 

In the system of Pr-.w the momentum boundary-layer 
thickness is very large in comparison with the thermal 
one. In the present analysis this premise makes it possi- 
ble to confine temperature disturbances within a ther- 
mal penetration distance and also causes velocity distur- 
bances to move through the whole depth of a fluid layer. 
The slow heating removes the dependence of stability 
conditions on Pr, because both thermal and momentum 
boundary layers are fully developed to the whole fluid 
depth upon the onset of motion. But in the case of rapid 
heating there remains a question about the effect of Pr, 
which will control the range of propagation of distur- 
bances of temperature and velocity. In this viewpoint 
the conventional frozen-time analysis assuming that 
disturbances of both temperature and velocity will oc- 

cupy the whole fluid depth may correspond to the 
limiting case of Pr----0. But considering the driving 
force of temperature difference causing the onset of mo- 
tion, it is also a probable guess that Ra~ is a weak func- 
tion of Pr, but a~ is dependent upon Pr to a certain 
degree. 

Considering all of the present results, the stability 
criteria are strongly dependent upon both the shape of a 
base temperature profile and the range of propagation of 
disturbances. It may be loosely stated that the modified 
frozen-time analysis confining the initial propagation of 
temperature disturbances to a penetration distance is ap- 
plicable to the predication of thermally induced in- 
stabilities in the system of moderately large Prandtl 
numbers. 

CONCLUSIONS 

The onset of thermal convection in a horizonal fluid 
layer heated from below with constant heat flux has 
been analyzed, using the modified frozen-time analysis. 
For this purpose a new mathematical approach by 
means of a rapidly converging power series has been 
developed. 

The present analysis predicts the most reasonable 
stability conditions in the system of large Prandtl 
numbers in comparison with the existing experimental 
data. When rr the critical conditions are found to 
have the relations of Rar = 14.1 r,7' and a~ = 0.248 
Rar TM. Also, in this range it is shown that growth period 
of disturbances is inversely proportional to Ra~ n. Con- 
sidering all the present results, it is concluded that the 
extent of penetration of temperature disturbances in a 
fluid layer plays a dominant role in determining the 
critical conditions causing the onset of thermal convec- 
tion. 

The results presented here complement the existing 
results for a fluid layer undergoing a step change in 
temperature by Kihm, Choi and Yoo [15]. 
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NOMENCLATURE 

a: dimensionless wave number 
A F coefficients in equation (11) 
bo: coefficients in equation (20) 
B F coefficients in equation (12) 
Ci: coefficients in equation (19) 
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d: fl~aid depth [m] 
d D: differential operator, 

F: column matrix defined by equation (24) 
g: acceleration of gravity [9.807 m/s  2] 
G G_: column matrix defined by equation (25) 
k: thermal conductivity [W/m ~ 

Nu: Nusselt number, 8~;' 
Pr: Prandtl number, ~/u 
qw: lower surface heat flux [W/m 2] 

R: Rayleigh number based on A T, g/~/t Td'/J,a 
Ra: Rayleigh number based based on qw, g/~qwd'/akv 

t: time [s] 
T: temperature [~ 

Ti: initial or upper wall temperature [~ 
w: dimensionless vertical velocity, Wd/~ 
W: vertical velocity [m/s] 
z: dimensionless vertical distance, Z/d 
Z: vertical distance [m] 

Greek symbols 
: thermal diffusivity [m2/S] 

~, : thermal expansivity [~ 
7 : coefficient in equation (21), aa" 
a" : dimensionless thermal penetration distance 

/tT: surface-to-surface temperature difference, T~-T i 
~. : reduced vertical distance, z/a" 
8 : dimensionless temperature, k(T-T~)/qwd 
8*: amplitude function of temperature in equation (5) 

: kinematic viscosity [m2/s] 
r : dimensionless time, ta]d 2 

w*: amplitude function of vertical velocity in equation 
(5) 

Subscripts 
A: region inside of penetration distance 

B: region outside of penetration distance 
C: critical state 
O: base state 
W: lower surface wall 
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